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T H E  E F F E C T I V E  P E R M E A B I L I T Y  T E N S O R  O F  H E A V I L Y  

I N H O M O G E N E O U S  GROUNDS 

S. E.  K h o l o d o v s k i i  UDC 532.546 

A method is developed for the construction of the effective permeability tensor in an anisotropic model of non- 

deformable grounds with a complicated structure, consisting of systems of mutually parallel layers, joints, and slightly 

permeable screens (interlayers), enclosed in one another (each layer of  one system consists of arbitrary oriented 

layers, joints and screens of another). A new filtration model of  joints and screens is suggested. 

Filtration processes are usually associated with expressed inhomogeneity of natural grounds because of their stratified 

structure, jointing, presence of slightly pervious screens, etc. [1, 2]. Tectonic joints and screens often appear at the interface of 

heterogeneous layers and form substantially regular systems [2, 3] such as free and sealed slits, veins, and interlayers. 

Accurately posed filtration problems in stratified grounds (conjugation problems) were solved in a general form for two, 

three, and four homogeneous zones (layers), separated by straight lines and circumferences (see the review in [4]). Numerous 

approximate methods have been developed for the conjugation problems with an arbitrary number of layers ([5-7] et al.). For 

systems of layers enclosed in one another the conjugation problem is essentially complicated, and in its solution the properties 

of grounds are globally averaged, i.e. their effective filtration parameters are determined. In [8-10] tensors of effective permeabil- 

ity were found for one system and two systems of mutually orthogonal periodical of layers. For jointly (cracked) porous media a 

model was suggested in [11] as two mutually penetrating continua with an average scalar permeability of blocks and joints. The 

effective permeability tensors were constructed for nondeformable [2, 3] and deformable [12, 13] jointly grounds. The authors 

quoted considered relatively simple structures of jointly grounds when the blocks are either impermeable or permeable and 

homogeneous. Moreover, the liquid flow in a joint is based on the model of viscous liquid motion through a channel with 

impermeable walls, and according to the model, hydraulic permeability of the joint is proportional to the cube of its opening 

(Boussinesq's formula) [2, 3, 6, 9, 12], that is permeability of fine joints is negligibly small. This model, based on the lubrication 

theory [14], is sufficiently idealized in the filtration theory where the wall surfaces of the joints are usually permeable and can be 

in contact at several points, the joints being partially or fully filled with debris materials [2]. As regards filtration, a joint is a 

layer, whose thickness is much smaller and permeability much larger than the characteristic parameters of the ground. 

The article describes a method for constructing the effective permeability tensors for nondeformable grounds, which 

consist of arbitrary oriented anisotropic inhomogeneous systems of layers, joints and screens enclosed into one another with an 

arbitrary depth of enclosure. Moreover, a filtration model of joints and screens is suggested in the form of degenerating layers of 
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infinitely small thickness and infinitely large (or small) permeability. In part icular cases the expressions found give the known 

results based on different considerations.  

Direct ional  Permeabil i ty.  In the space XlX2X 3 consider anisotropic ground,  in which the components  v i of  the filtration 

velocity satisfy the general  l inear  system 

3 &p, 
v i = ~ K i ~  i =  1, 3, ;=, ~ (1) 

where 

Kij = K;~. (2) 

Inversion of Eq. (1) gives the relat ion between the fil tration velocity modulus  v having a fixed direction s = (ai) and the 

respective derivative 0~o/0s as 

v = K~ 0q~ 
as ' (3) 

where 

3 

i. i=  t (4) 

Hence, along the s t reamline  the Darcy law (3) is satisfied where K s is the directional  permeability. F rom the necessary inequality 

K s > 0 we find with Silvester's cr i ter ion [15] the inequalit ies 

K i z ] > 0 ,  A i i > O ,  A > O .  (5) 

Modeling of Lamina ted  Anisotropic Grounds .  In the space xyz consider the ground, consisting of m anisotropic layers D n 

(Zn_ 1 < z < Zn) with the permeabil i ty tensors T n = (Kijn), n = 1 .... , m, where Kij n are arbitrary constants,  Satisfying the 

condit ions (2), (5), and the system of layers may regularly occur along the z-axis. In the region D O (z < z0) with permeabili ty K o 

consider an arbitrary t ranslat ional  flow, prescribed by the potent ia l  ~o 0 = ax + by + cz/K 0. While  solving the corresponding 

conjugat ion problem 

div (T~vq%) = 0, z = zn: [q%] = 0, IvY] = 0, (6) 

write the potentials  79n in layers D n as ~o n = ax + by + CnZ + d n where 

n 

1 (c - -  aK% - -  bKz3), d,~ = ~,'~ c,~lv - -  c~zn + 1--L czo, Cn = , ~ -  n . 

K3z "~ Ko V =  i 

l n = z n - Zn_ 1. Hence,  with (1) in view, find the components  vi n of  the fi l tration velocity Vn, its const i tut ing cosines ai n = 

vin/[ v n [, the lengths of the sections s n = In/or3 n of the broken streamline,  their projections ri n = ainSn, i = 1, 2, onto the axes x 

and y in the layers D n and the time, t = Z n Sn/[V n [, during which a liquid particle passes the whole s t reamline  (here and in the 

following n = 1, ..., m in the sums). 

In the model ing suggested a homogeneous  inclusion is substi tuted for the stratified inclusion D so that at the inclusion 

boundaries  z = z 0, z = z m the main  parameters  of the flow (potential  values, a flow through the boundary,  inlet  and outlet 

points for liquid particles, and t ime of their passing the region D) remain unchanged.  F rom the boundary  values ~, = ~o 0 at z = 

z 0 and ~o = ~o 0 at z = z m find the average potential ,  satisfying any of Eqs. (6) with constant  coefficients 

where 

z ( c  
=: ax 4- by + --[-- (c(~ - -  aN 1 - -  bN2) + Ko 1 Chin) 

1 ~n Z~ 

Kz3 ,~ ,, K~3 (7) 
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Here a chord of the length s: s 2 = Yi=l 2 (X n rin)2 with the constituent cosines a i = (1/s)Xnri n is substituted for the broken 

streamline. Calculating the mean velocity v = s/t and the derivative 09,/0s, where s = (ai) from the Darcy law (3), we find the 

average permeability of the homogeneous model in the direction s as Eq.(4) where 

K.---7- R2~+-7- ; K~=~,  R n +  
(8) 

K a a -  l ; K12=  1 (' NIN~ Rlzl; K~.a-- N~ 

Here 

R~j= x I,,A~. K~z (9) 

and Kij is consistent with the conditions (5), i.e. a laminated anisotropic inclusion can be modeled by homogeneous ground with 

components of the effective permeability tensor as in Eq. (8). 

Modeling of Stratified Anisotropic Inhomogeneous Grounds with Joints and Screens. Let the layers D n alternate with 

joints and screens along the planes z = const. Let joints and screens be substituted by homogeneous layers with thickness by, hi, 

and permeabilities qv, Pff, respectively, v = 1, ..., ml, ff = 1, ..., m 2. The resultant stratified ground will be modeled by Eqs. (8), 

followed by passing to the limit at b v, hi,, P/~ --, 0, % --- oo. It is assumed here that 

A~, -- lira b,,q,,, B~ = lira - -  
htl 

, ( l O )  
Pj~ 

where Av, B v are finite parameters of joints and screens, characterizing their opening and permeability. In practical calculations, 

with estimates by, hff, P/~ << 1, qv >> 1, taken into consideration, Ph, = by% and B~ = hff/P/~ can be assumed. Hence, the 

components of the effective permeability tensors for the grounds considered will be found from Eqs. (8) where Ni, l, and R12 

have the form of Eqs. (7), (9), 

7 + E = Z + 2: A, (11) 
K3a . ,, K~a ., 

If there are no joints and screens (A v = B~ = 0) and layers D n are isotropic, the known expressions, obtained from different 

considerations [8], follow from Eqs. (8). 
Consider a stratified anisotropic inhomogeneous inclusion D(a < z < /3) with the permeability tensor (fij(z)) in the 

presence of joints and screens z = const, where fij(z) are piecewise continuous functions. As before, dividing the region D into 

layers Dn(Zn_ 1 < z < Zn) and passing in the integral sums (7), (9), and (11) to the limit at l n = Az n ~ 0, find the components of 

the effective permeability tensor of the inclusion D from Eqs. (8) where 

R12=! ''~ Al~f.a dz; Ni= ! fmfaa dz; l=~--a; 

and Aij are cofactors of the matrix (fij(z)). 
Method of Successive Modeling. Anisotropic models of grounds consisting of anisotropic layers with joints and screens 

can be constructed from Eqs. (7)-(11). In the model, anisotropic ground in each layer may also be considered as a model of a 

stratified ground with joints and screens, etc. Thus, successive application of Eqs. (7)-(11) gives models of stratified ground 

systems enclosed in one another (first, models are constructed for the innermost layers with joints and screens and in subsequent 

modeling the number of enclosed systems decreases at each step). 
Consider a particular case. In homogeneous ground with permeability K, let there be N systems of joints, which in each 

system are parallel to one another, spaced by a distance l n and having parameters A n and vectors of the normal v n = ( a n l  , an2, 

COn3 ) tO the joint planes, n = 1, ..., N. Successive modeling gives the final components of the effective permeability tensor of the 

ground 
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N , N 

Kit = K + .,~'~ L,~ (1 - cz,~i ), K,~ = - -  . ~  Lncz,~cz,j, i 4-  ], (12) 
t t ~  l r t - -  1 

where L n = An/l n. Hence, for impermeable blocks K = 0, according to the Boussinesq law we have qn = bn 2/12, Eqs. (10) and 

(12) coincide with the similar equations from [3]. 

Note that the effective permeability components (8) may be easily constructed with known parameters of layers, joints 

and screens. In the model the known isotropizing substitution reduces the equation of motion to the Laplace equation [3], 

because of which filtration can be investigated in new classes of grounds with a complicated structure. 

NOTATION 

XIX2X 3 and xyz, coordinates; v and vi, modulus and components of filtration velocity; ~o, potential; Kij , permeability tensor 

components; s and al ,  unit vector and its coordinates; A, Aij , and Aij n, determinant and cofactors of matrices (Kij) and (Kijn); 

I~j n, components of the permeability tensor T n of the layer D; Ko, penetrability factor of the region Do; ~%, potentials in the 

layers Dn; a, b, c, Cn, and dn, flow parameters; [9'], function discontinuity; vi n and cq n, components and constituting cosines of 

filtration velocity Vn; In, thickness of the layer Dn; s n and ri n, lengths and projections of the sections of the broken streamline; s, 

length of the averaged rectilinear streamline; t, time; D, laminated inclusion with thickness l; Rij , Ni, or, parameters; an_ 1 and an, 

boundary values of z in Dn; b~ and ha, opening; q~ and Pt,' permeability, A~ and B~,, parameters of joints and screens, respective- 

ly; fij(z), components of effective permeability tensor; a and fl, ends of the section of determining the functions fii; ani' coordi- 

nates of the vector of normal v n to the planes of joints; Ln, geometric parameters of joints; K, permeability of blocks; m, the 
number of layers; N, the number of joint systems. 
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